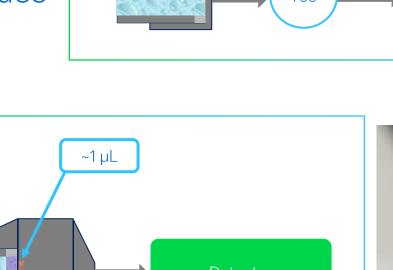
# Selective Detection HPLC Assays via In-Column Derivatisation

Colin Pipe<sup>1</sup>, Thirada Suktham<sup>2</sup>, Arianne Soliven<sup>1</sup>, Tony Edge<sup>1</sup>, Matt James<sup>1</sup>, Andrew Jones<sup>3</sup>, Andrew Shalliker<sup>2,4</sup> and <u>Geoff Faden<sup>5</sup></u>

<sup>1</sup>Avantor, VWR International Ltd., 1-3 The Markham Centre, Station Road, Theale, Reading, Berkshire RG7 4PE, UK. <sup>2</sup> Western Sydney University, South Parramatta, NSW 2151, AUSTRALIA. <sup>3</sup>Chemika 119 Magowar Rd, Girraween, NSW 2145 AUSTRALIA. <sup>4</sup>Chromaspeed Pty Ltd. Tonsley SA 5042 AUSTRALIA. <sup>5</sup>MAC-MOD Analytical Inc., 103 Commons Court, PO Box 587, Chadds Ford, PA 19317 USA

## Background

- Selective detection assays via HPLC post-column derivatization (PCD)
  have many applications: amino acid, antioxidant and phenolic
  analysis.
- Advantages over pre-column derivatization include:
  - Reduced sample manipulation.
  - Ability to work with less stable derivatization products.
- For amino acid analysis using OPA, PCD requires an in-line reactor which adds significant dead volume:
- This significantly reduces the chromatographic performance.
- This poster investigates an alternative approach, In-column derivatisation (ICD) to overcome this for amino acid analyses.
- In ICD, reagent/eluent mixing is initiated at the outlet frit, providing enhanced mixing.
- Use of reactor eliminated, improving chromatographic performance.


ICD

- Application of ICD is demonstrated for authentication of coffee via the antioxidant fingerprint, which is complex and difficult to imitate.

PCD

#### ICD Approach

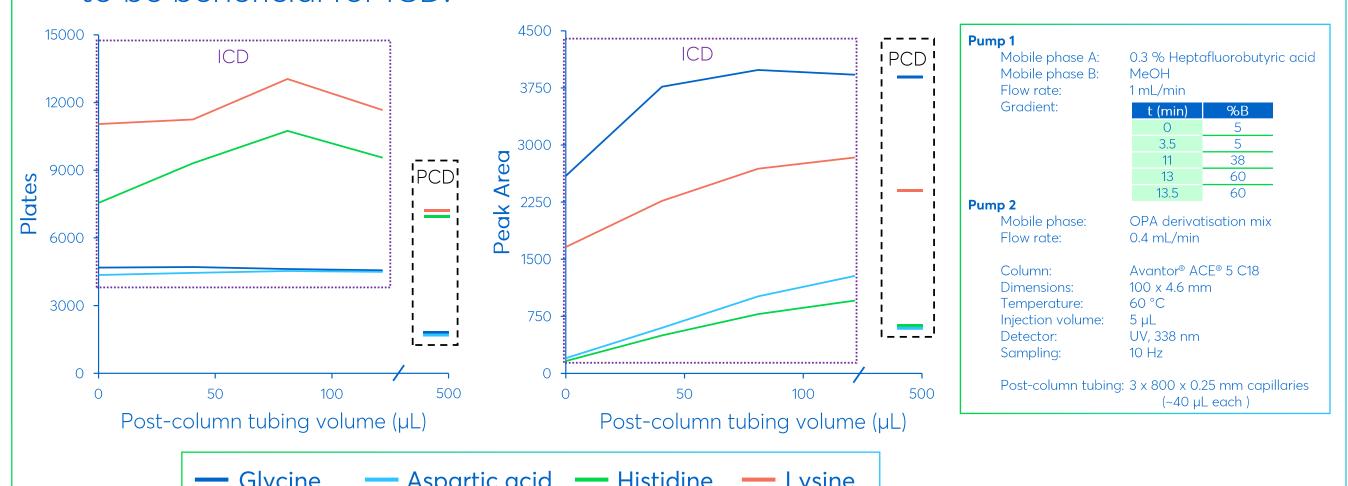
- PCD Setup:
- More complex
- Reactor, tee and tubing introduce excessive dead column
- Degrades peak efficiency
- ICD Setup:
- Simplified setup
- Reaction occurs at column frit
- Dead volume significantly reduced



Pump 2 ivatising reage

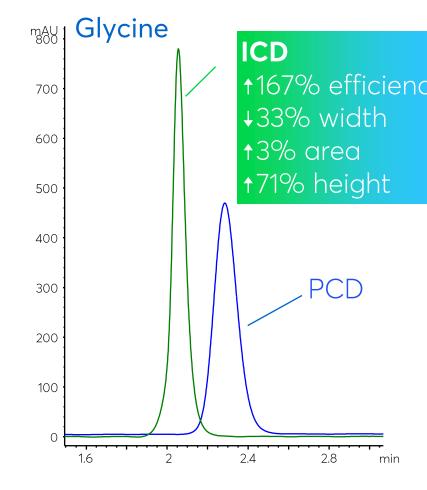


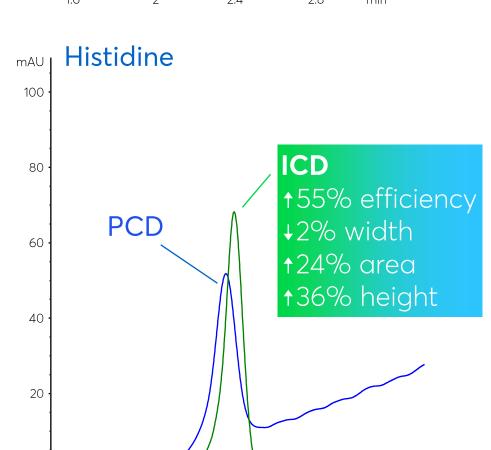
# Interlaboratory feedback

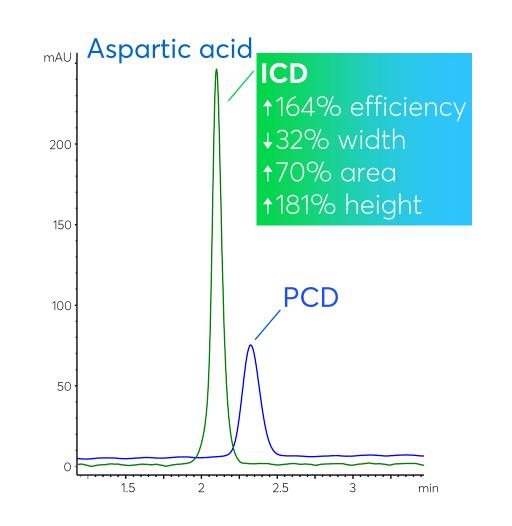

ICD OPA for amino acid analysis:

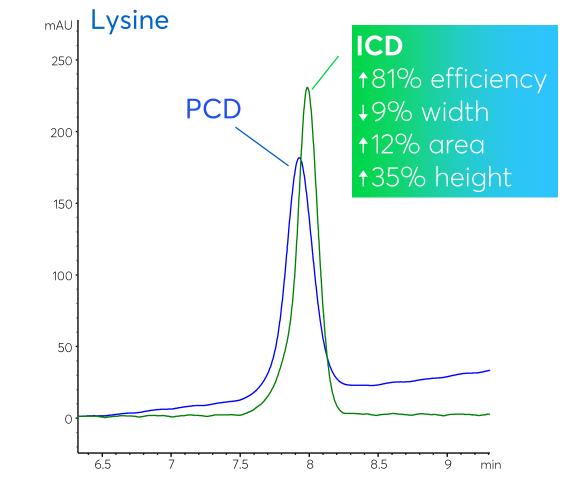
- Using OPA reagent, the ICD process gave an average of 67% gain in efficiency compared to PCD.
- Due to the gain in efficiency, it is probable that the laboratory productivity, in relation to the amino acid analysis, could be substantially increased with further improvements in sensitivity.
- The flows were optimised for the PCD process (using existing methodology) rather than the ICD process. This was done to ensure we have a direct comparison between the 2 techniques.
- ICD yields reliable operation, negating the need for expensive re-runs.
- There is actually 2 connection less (mixing tee) in the ICD setup compared to PCD. If we can teach an analyst to use PCD, I can't see any issues with ICD.
- No issues converting our existing PCD methods to ICD.

In collaboration and with permission on behalf of Dr. Andrew Jones, Chemika.


# ICD Amino Acid Assays with O-phthalaldehyde (OPA)


- For the OPA reagent, a small amount of post column dead volume was found to be beneficial for ICD:





ICD (+80  $\mu$ L) provided significant improvements vs. PCD (500  $\mu$ L):

|                        | Glycine |      | Aspartic acid |      | Histidine |      | Lysine |      |
|------------------------|---------|------|---------------|------|-----------|------|--------|------|
| Plates                 | 4620    | 1731 | 4534          | 1719 | 10746     | 6953 | 13045  | 7216 |
| Peak Width (10%) (min) | 0.16    | 0.24 | 0.17          | 0.25 | 0.45      | 0.44 | 0.40   | 0.44 |
| Area (mAU)             | 3986    | 3886 | 1011          | 594  | 780       | 628  | 2689   | 2408 |
| Height (mAU)           | 795     | 465  | 194           | 69   | 60        | 44   | 222    | 165  |



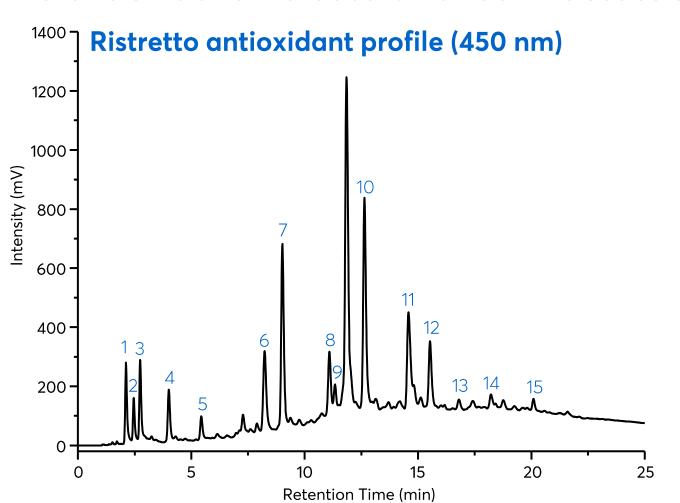






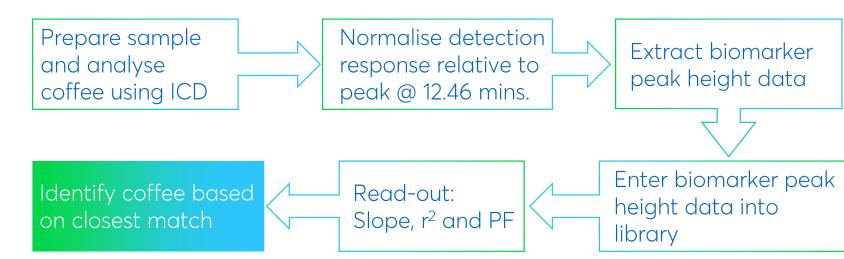
# References

- 1. Using HPLC with In-Column Derivatization to Authenticate Coffee Samples. *Molecules* 2023 **28** 1651.
- 2. Determination of antioxidants by a novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) assay with post-column detection. *Anal. Chim. Acta* 2010 **674** 79–88.






## Authentication via ICD: Antioxidant Profiling<sup>1</sup>


An ICD selective detection assay for antioxidants using a CUPRAC reagent<sup>2</sup> was used to authenticate coffee:

- Antioxidant profiles are complex and unique for different coffees.
- 15 antioxidant indicators varied in detection response.



| Biomarker | Retention Time<br>(minutes) |  |  |
|-----------|-----------------------------|--|--|
| 1         | 2.08                        |  |  |
| 2         | 2.41                        |  |  |
| 3         | 2.67                        |  |  |
| 4         | 3.95                        |  |  |
| 5         | 5.37                        |  |  |
| 6         | 8.16                        |  |  |
| 7         | 8.85                        |  |  |
| 8         | 10.88                       |  |  |
| 9         | 11.12                       |  |  |
| 10        | 12.46                       |  |  |
| 11        | 14.44                       |  |  |
| 12        | 15.45                       |  |  |
| 13        | 16.76                       |  |  |
| 14        | 18.19                       |  |  |
| 15        | 20.12                       |  |  |

- Authentication workflow:



- 5 samples matched to a library of 32 coffees.
- Compilation of a larger library for improved classification.

|                         | Соттее    |           |           |            |           |  |  |  |  |
|-------------------------|-----------|-----------|-----------|------------|-----------|--|--|--|--|
|                         | Unknown 1 | Unknown 2 | Unknown 3 | Unknown 4  | Unknown 5 |  |  |  |  |
| Highest match           | Starbucks | Guatemala | Vittoria  | Profondo   | Or Absolu |  |  |  |  |
|                         | Columbia  |           | Espresso  |            |           |  |  |  |  |
| Slope                   | 0.9765    | 0.9999    | 0.9782    | 0.9903     | 0.9711    |  |  |  |  |
| $R^2$                   | 0.9748    | 0.9887    | 0.9956    | 0.9914     | 0.9879    |  |  |  |  |
| P.F.                    | 14.3692   | 1.2538    | 1.5741    | 1.8529     | 4.0843    |  |  |  |  |
| 2 <sup>nd</sup> Highest | No Match  | Inca Peru | Arabica   | Long Black | No Match  |  |  |  |  |
| Match                   |           |           | Catuai    |            |           |  |  |  |  |
| Slope                   |           | 1.0043    | 1.0022    | 1.0007     |           |  |  |  |  |
| $R^2$                   |           | 0.9958    | 0.9831    | 0.9899     |           |  |  |  |  |
| P.F.                    |           | 1.1441    | 1.5687    | 1.8319     |           |  |  |  |  |
|                         |           |           |           |            |           |  |  |  |  |

#### Conclusions

- ICD provides a simple solution to complex/challenging separations requiring PCD.
- Since the application of ICD requires minimal addition of postcolumn dead volume, post-column dispersion is reduced, conserving the columns theoretical separation efficiency (55 to 167% efficiency improvement and up to 1/3 reduction in peak width compared to PCD).
- Due to the high efficiency, complex samples can be chemically fingerprinted using compounds that are only visible through chemical reactions.
- As the chromatographic efficiency is higher than in PCD, sensitivity is often improved.
- High efficiency also means that shorter columns can be employed,
   and this increases the analytical throughput.